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Abstract Forests are socioeconomically and ecologically

important ecosystems that are exposed to a variety of

natural and anthropogenic stressors. As such, monitoring

forest condition and detecting temporal changes therein

remain critical to sound public and private forestland

management. The National Parks Service’s Vital Signs

monitoring program collects information on many forest

health indicators, including species richness, cover by ex-

otics, browse pressure, and forest regeneration. We applied

a mixed-model approach to partition variability in data for

30 forest health indicators collected from several national

parks in the eastern United States. We then used the

estimated variance components in a simulation model to

evaluate trend detection capabilities for each indicator. We

investigated the extent to which the following factors

affected ability to detect trends: (a) sample design: using

simple panel versus connected panel design, (b) effect size:

increasing trend magnitude, (c) sample size: varying the

number of plots sampled each year, and (d) stratified

sampling: post-stratifying plots into vegetation domains.

Statistical power varied among indicators; however, indi-

cators that measured the proportion of a total yielded

higher power when compared to indicators that measured

absolute or average values. In addition, the total variability

for an indicator appeared to influence power to detect

temporal trends more than how total variance was parti-

tioned among spatial and temporal sources. Based on these

analyses and the monitoring objectives of the Vital Signs

program, the current sampling design is likely overly

intensive for detecting a 5 % trend�year-1 for all indicators

and is appropriate for detecting a 1 % trend�year-1 in most

indicators.

Keywords Monitoring � Trend detection � Sampling

design � Forest health indicators � Variance components

Introduction

Understanding both the current condition of forest resour-

ces and how forests are changing over time is critical to

sound public and private forestland management. Both

ecological and anthropogenic forces shape the forests of

the eastern United States. Ecological factors (e.g., geology,

topography, soil nutrient availability, weather, and distur-

bance patterns) and anthropogenic stressors (e.g., harvest

and land-use conversion) can act independently or in
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concert to directly influence the structure, composition, and

dynamics of forest vegetation. For instance, exotic plant

and animal species, climate change, white-tailed deer

(Odocoileus virginianus), and altered disturbance regimes

are complex factors that are important determinants of the

current condition and structure of forests. These factors are

also likely to influence how forest condition and structure

will change over time in the eastern US.

The introduction and spread of invasive exotic plant and

animal species has had profound impacts on eastern forests,

including the near elimination of some important tree

species (Pimentel et al. 2006). In the past decade, invasive

insects, such as hemlock wooly adelgid (Adelges tsugae),

emerald ash borer (Agrilus planipennis), gypsy moth (Ly-

mantria dispar), and beech scale insect (Cryptococcus fa-

gisuga), have caused wide-spread mortality or serious

damage to many forests in the eastern US (Steinman 2004).

Invasive exotic plant species also impact eastern forests

through competition with native plant species, resulting in

changes to the vegetation structure over space and time.

Invasive plants can disrupt ecosystem-level processes by

altering resource utilization, trophic structures, and distur-

bance regimes. These disruptions may result in altered fire

regimes, nutrient cycling, or soil development (Vitousek

1990; Pimentel et al. 2000; Mack 2003).

In addition to invasive species, global climate change

may further affect the composition and dynamics of eastern

forests (Woodall et al. 2010). Chronic forest stress and

mortality risk for some species may increase in coming

decades due to warmer temperatures, more frequent heat

waves, and more frequent or longer term regional drought

conditions (Allen et al. 2010). Although increases in tree

biomass are expected for some species due to increases in

carbon dioxide concentrations (Norby et al. 2002), trees

may also become more susceptible to insect pests and

disease (Logan et al. 2003). Furthermore, some invasive

plants may have a competitive advantage in a changing

climate if they are more effective than native plants at

adjusting their physiology (e.g., flowering times) to

changing climatic conditions (Willis et al. 2010).

Changes in land use and land management over the

previous decades have led to expanded native white-tailed

deer (Odocoileus virginianus) populations (Latham et al.

2005). The effects of selective browsing by deer on forest

ecosystems include shifted species composition toward

browse-resilient species, competitive exclusion of native

species, regional biotic homogenization, and reduced sur-

vival of tree seedlings and saplings, among others (Russell

et al. 2001; Horsley et al. 2003; Rooney et al. 2004;

Kirschbaum and Anacker 2005; Latham et al. 2005). In

particular, browse pressure from deer has reduced the

abundance, growth, and/or fecundity of many native plant

species in the lily (Liliaceae), arum (Araceae), and orchid

(Orchidaceae) families (Anderson 1994; Augustine and

Frelich 1998; Ruhren and Handel 2003; Kirschbaum and

Anacker 2005). Conversely, the spread of plant species less

palatable to deer [e.g., hay-scented fern (Dennsteadtia

punctilobula) and striped maple (Acer pensylvanicum)] can

interfere with regeneration of desirable tree species and

herbaceous species diversity (Latham et al. 2005).

Because these aforementioned stressors (and others,

e.g., acid deposition), natural processes, and land man-

agement activities shape the temporal dynamics of eastern

forested ecosystems, it is important for natural resource

managers to understand the current condition of forest

resources and how the forests are changing over time. To

address this monitoring need, the National Park Service

(NPS) began a long-term forest health monitoring program

in 2007 (Perles et al. 2014) in nine national parks in the

Appalachian Mountains, referred to as the Eastern Rivers

and Mountains Network (ERMN). Long-term monitoring

of forest vegetation and soils was identified as a high pri-

ority for the ERMN, because plant species diversity and

functional plant communities are natural resources critical

to the parks. Forest communities serve as a base for other

trophic components and also serve as an integrated mea-

sure of terrestrial ecosystem health by expressing infor-

mation about climate, soils, and disturbance. This

monitoring effort is a component of the ERMN vital signs

monitoring program (Marshall and Piekielek 2007) and

part of the nationwide NPS inventory and monitoring

program (Fancy et al. 2009).

The ERMN includes nine parks in New York, New

Jersey, Pennsylvania, and West Virginia (Fig. 1), which

together encompass nearly 91,000 ha of land area and over

965 km of streams and rivers within the parks’ authorized

boundaries. The network includes four smaller parks in

central and southwestern Pennsylvania that have a pri-

marily cultural or historical focus. These cultural parks are

Allegheny Portage Railroad National Historic Site (NHS),

Johnstown Flood National Memorial (NMem), Fort

Necessity National Battlefield (NB), and Friendship Hill

NHS. The remaining five larger parks preserve segments of

large rivers and generally extend to the ridgetops sur-

rounding the river section. These river parks are Upper

Delaware Scenic and Recreational River (SRR), Delaware

Water Gap National Recreation Area (NRA), New River

Gorge National River (NR), Gauley River NRA, and

Bluestone National Scenic River (NSR).

The ERMN Vegetation and Soil Monitoring Program

(Perles et al. 2014) provides information regarding the

condition of the parks’ vegetation and how this condition is

changing through time. In order to be effective, the mon-

itoring program must be able to detect changes in the

parks’ vegetation within a reasonable period of time, with a

reasonable level of statistical confidence. Power analysis is
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a useful tool for evaluating the performance of ecological

monitoring programs (Peterman 1990; Fairweather 1991;

Hatch 2003), and, in particular, for investigating how

specific variance components affect the power to detect

trends for a given sampling design (Urquhart et al. 1998).

Statistical power is the probability of rejecting the null

hypothesis when it is, in fact, false (i.e., detecting a trend

when a trend is present). Several factors influence the

ability to detect change over time, including sample size,

the probability of a type-I error (a), the probability of a

type-II error (b), trend magnitude, and variance. Type-I

error, or ‘‘false change,’’ refers to falsely detecting a trend

when no trend is present. Type-II error, or ‘‘missed

change,’’ refers to wrongly concluding that no trend is

present when, in fact, there is a trend. Statistical power is

defined as 1 - b. Commonly used values of a and b range

from 0.01 to 0.2 (Gibbs et al. 1998). The vegetation and

soil monitoring protocol (Perles et al. 2014) suggested that

this monitoring program should ideally be able to detect a

20 percent change in key indicators over five or ten years

(i.e., two or three plot revisits, see below), with an a of 0.1

and a power of 0.80. Specifically, this program is interested

in detecting monotonic increases or decreases in key

indicators (Perles et al. 2014).

One approach to evaluating the statistical power of

different sampling designs to detect trends in forest vege-

tation is to use estimated variance components within a

simulation framework (e.g., Wagner et al. 2007). A com-

ponent of variance approach has been advocated to quan-

tify variability in ecological data when evaluating temporal

trends and monitoring ecological systems (Urquhart et al.

1998; Larsen et al. 2001; Kincaid et al. 2004), largely,

because the structure of variance, not just total variance,

can influence trend detection capabilities (Wagner et al.

2007). Under this framework, total variance is partitioned

into five components, including:

(a) spatial variation (site-to-site);

(b) coherent temporal variation (year-to-year) affecting

all sites in a similar manner;

(c) ephemeral temporal variation (i.e., a site x year

interaction) corresponding to independent yearly

variation at each site;

Fig. 1 Location of Eastern Rivers and Mountains Network (ERMN) parks
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(d) trend variation corresponding to site-specific devia-

tions from any long-term average trend; and

(e) residual variation which includes observer error and

other unexplained sources of variation.

Power analysis is not only a useful tool for investigating

the effectiveness of different sampling designs and the

relative power of different indicators, but it can also be

used to elucidate how specific variance components affect

the power to detect trends for a given sampling design.

This is important, because depending on the structure of

the variance, power to detect trends may be increased by

altering the sampling design.

The objectives of this study were to use a variance

components approach on data collected from the ERMN

vegetation monitoring program to (1) assess 30 key indi-

cators of forest structure, function, or dynamics with

respect to trend detection capabilities, and (2) investigate

the extent to which the following conditions affected the

ability to detect temporal trends in forest indicators:

(a) using a simple panel versus a connected panel design

(defined below);

(b) increasing the trend magnitude effect size (from 1 to

10 % change in a forest indicator�year-1);

(c) varying sample size in relation to park size (ranging

from 3 to 25 plots�year-1); and

(d) post-stratifying sampling plots into vegetation

domains (xeric and mesic).

In addition, we anticipated that our ability to estimate

coherent temporal variability would be limited, because the

time series for estimating variance components was rela-

tively short (i.e., 4–5 years); therefore, we also investigated

the effects of increasing the coherent temporal variation

from 0 to 10 % of total variation on the power to detect

trends. We elected to evaluate the effects of coherent

temporal variation separately because manipulation of

sampling design will not reduce the influence of this source

of variation on the power to detect trends.

Methods

Although a brief overview of vegetation and soil moni-

toring methods is provided here, a detailed rationale of

sampling design and methods, in addition to data collection

standard operating procedures, is provided in the vegeta-

tion and soil monitoring protocol (Perles et al. 2014). The

protocol was based on the US Forest Service (USFS) Forest

Inventory and Analysis (FIA) program (United States

Department of Agriculture, Forest Service 2007) and the

vegetation monitoring protocols of four other NPS Inven-

tory and Monitoring programs in the eastern United States

(Sanders et al. 2008; Comiskey et al. 2009; Schmit et al.

2009; Tierney et al. 2009).

Sampling Design

Vegetation was monitored at permanent plots (i.e., fixed

sites) within each park. Between 2007 and 2011, in eight

ERMN parks, 360 total plots were established, with the

number of plots per park ranging from 12 to 102, propor-

tional to the size of the park. This sample size was deter-

mined based on the experiences of other NPS networks that

had implemented vegetation monitoring programs and by

ERMN budgetary and logistical constraints.

To select monitoring locations, a regular grid of poten-

tial plot locations was overlain on a map of the park.

Sampling locations were selected from the regular grid

using a generalized random-tessellation stratified (GRTS)

design (McDonald 2004; Stevens and Olsen 2004) in order

to produce a randomly selected, spatially balanced sample

of flexible size (Stevens and Olsen 2004). Plots were

sampled on a 4-year simple panel design, in which one

panel containing one-fourth of a park’s total plots was

sampled each year. On the fifth year, the vegetation in the

first panel of plots was resampled. An alternative design we

evaluated was a connected panel design in which some

plots are visited every year (i.e., the common panel) in

addition to the plots that were revisited once every fifth

year. In theory, this ‘‘connectivity’’ through time can pro-

vide increased power in some cases and increase the ability

to estimate ephemeral variability (i.e., site-by-year vari-

ance) by having among-year site revisits (Urquhart et al.

1998; Urquhart and Kincaid 1999). However, in practice,

this design increased monitoring costs and could expose

plots to additional sampling impacts (e.g., vegetation

trampling). In the ERMN parks, a connected panel design

was preliminarily implemented to better allow for the

estimation of the ephemeral temporal variance component.

This design entailed revisiting 5–14 plots that were estab-

lished in 2007 and 2008 among three of the large parks as

part of a common panel. In addition, each year, three plots

from the panel were resampled within a few weeks of the

original sampling as a quality control measure.

Field Methods

At each plot, the ERMN monitored a suite of forest health

indicators using several embedded sampling units. Tree,

stand, and plot measurements were collected within fixed

area 15-m radius circular plots. Tree regeneration and

shrub measurements were collected on four 2-m radius

circular microplots embedded within each plot. Coarse

woody debris data were collected using line intersect

sampling along six 15-m transects. Understory plant
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Table 1 Forest health indicators evaluated for trend detection capabilities and used for evaluating the National Parks Service’s Eastern Rivers

and Mountains Network monitoring program’s statistical power to detect temporal trends. Indicators marked with a ‘‘C’’ are count data; all other

indicators are non-count data

Indicator Calculation of indicator for each plot Years of

data used

Groundstory diversity

Total quadrat species richness (C) Count of all vascular species present among 12 quadrats 2008–2011

Walk around species richness (C) Count of all vascular species observed during time-constrained search of entire

plot (does not include any species observed in quadrats)

2008–2011

Total groundstory species richness (C) Sum of total quadrat species richness and walk around species richness 2008–2011

Floristic quality index Index (Chamberlain and Ingram 2012) incorporating the ecological

conservatism of plant species observed in quadrats and total quadrat species

richness

2008–2011

Number of key invasive exotic species

present (C)

Count of invasive exotic species observed (Perles et al. 2014) among all

sampling sub-units within the plot

2007–2011

Average proportion of total species richness

in native species

For each quadrat calculated: [Native Species Richness]/[Total Species

Richness]; then averaged across 12 quadrats

2007–2011

Average proportion of total species richness

in non-native species

For each quadrat calculated: [Non-native species richness]/[Total species

richness]; then averaged across 12 quadrats

2007–2011

Average proportion of total species richness in

invasive exotic species

For each quadrat calculated: [Invasive exotic species richness]/[Total species

richness]; then averaged across 12 quadrats

2007–2011

Average proportion of total cover in native

species

For each quadrat calculated: [Sum of native species cover]/[Sum of all species

cover]; then averaged across 12 quadrats

2007–2011

Average proportion of total cover in non-

native species

For each quadrat calculated: [Sum of non-native species cover]/[Sum of all

species cover]; then averaged across 12 quadrats

2007–2011

Average proportion of total cover in invasive

exotic species

For each quadrat calculated: [Sum of invasive exotic species cover]/[Sum of all

species cover]; then averaged across 12 quadrats

2008–2011

Total cover of invasive exotic species Sum of midpoint values from cover class data for all invasive exotic species

(Perles et al. 2014) among 12 quadrats

2008–2011

Average cover of invasive exotic species Sum of midpoint values from cover class data for all invasive exotic species

(Perles et al. 2014) within a quadrat, then averaged across 12 quadrats

2008–2011

Total cover of rhizomatous ferns Sum of midpoint values from cover class data for all fern species among 12

quadrats

2007–2010

Browse indicators

Total number of individuals of all browse-

indicator species (C)

Count of all individuals of browse-indicator species (Perles et al. 2014) among

12 quadrats

2007–2011

Total number of Canada mayflower

individuals (C)

Count of Canada mayflower individuals among 12 quadrats 2007–2011

Average height of tallest jack-in-the-pulpita Height of tallest jack-in-the-pulpit plant averaged across all quadrats (n B 12)

within plot that contained jack-in-the-pulpit

2007–2010

Tree regeneration and shrubs

Average stocking index Index of tree seedling abundance and height (McWilliams et al. 2005) calculated

for each microplot, then averaged across four microplots

2007–2010

Total seedling species richness (C) Count of tree species present as seedlings among four microplots 2007–2011

Total sapling basal area Sum of sapling basal area among four microplots 2007–2010

Total sapling density (C) Sum of sapling counts among four microplots, converted to per hectare density 2007–2011

Total seedling density (C) Sum of seedling counts among four microplots, converted to per hectare density 2007–2011

Total number of shrub stems (C) Sum of all shrub stem counts among four microplots 2007–2011

Total shrub cover Sum of midpoint values from cover class data for all shrub species among four

microplots

2007–2010

Total shrub species richness (C) Count of shrub species present among four microplots 2007–2011

Coarse woody debris

Average coarse woody debris volume Huber’s formula (Marshall et al. 2000) used to estimate volume per transect,

then calculated average volume from six transects

2007–2010
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composition and diversity data were monitored using

twelve 1-m2 quadrats set along the six transects. The

number, height, and reproductive status of specific herba-

ceous species sensitive to deer browse are also recorded

from the quadrats. For complete description of data col-

lection methods, see Perles et al. (2014).

Statistical Analysis

Thirty indicators characterizing forest structure, function,

and dynamics were included in this study (Table 1). Either

4 or 5 years of data were available at the time of analysis.

For instance, some data from 2007 were not included due

to differences in data collection procedures during the first

year of sampling.

Because data collection protocols generated both dis-

crete count (e.g., the number of individuals) and continuous

non-count (e.g., live tree basal area) data, two separate

statistical models, that assumed different error distribu-

tions, were used. For the non-count data (Table 1), a linear

mixed model, that assumed Gaussian errors, was used to

estimate variance components for 17 forest indicators,

similar to the approach suggested by Piepho and Ogutu

(2002). The mixed model used for the analyses was

yijk ¼ lþ ai þ yearj kþ tið Þ þ bj þ cij þ eijk; ð1Þ

where yijk is the loge-transformed forest indicator from the

kth sample for plot i in year j, and l and k are the intercept

and slope fixed effects (i.e., the population-average inter-

cept and trend), respectively. The ai is a random effect for

plot i, representing plot-to-plot (spatial) variability, inde-

pendent, and identically distributed (iid) as N r
2

a

� �
; bj is a

random effect for the jth year (coherent temporal vari-

ability), iid as N 0; r
2

b

� �
; ti is a random effect for the trend

for plot i, iid as N 0; r
2

t

� �
; cij is the plot 9 year inter-

action (ephemeral temporal variability), iid as N 0; r
2

c

� �
;

eijk is the unexplained error (residual error), independent as

N 0;r
2

e

� �
. The year covariate (year) is the jth year minus

the mean year (i.e., grand-mean centered) used in the

analysis. This standardization of year was performed to

provide numerical stability.

For the 13 indicators summarized as count data

(Table 1), a negative binomial mixed model was used to

estimate temporal and spatial variances (Irwin et al. 2013).

Thus, we assume that Yijk * NB(lijk, j) where Yijkis the

kth sample of each indicator at plot i in year j, lijkis the

expected value for that sample, plot, and year, and j is the

scaling parameter of negative binomial distribution. We

employ a log-link function such that the loge of the

expected value would be a linear function of the predictors:

gijk ¼ vþ ai þ yearj kþ tið Þ þ bj þ cij; ð2Þ

where gijk is the loge of the expected value of each indicator

from the kth sample at plot i in year j, m is the fixed

intercept, and k is the fixed slope for temporal trends using

year as the covariate (i.e., the predictor variable as

described above). The random effect terms ai (plot-to-plot

effects), ti (plot-specific trend effects), bj (coherent tem-

poral effects), and cij (ephemeral temporal effects) are, as

described above, independent and identically distributed

(iid) as N 0; r
2

x

� �
; where r

2

x

� �
is the unique variance

parameter for each random effect. Unlike Eq. 1, the neg-

ative binomial does not have an additive residual error

term. Thus, to produce a value comparable to the scale of

the other variance component terms and to what is esti-

mated when lognormal error is assumed in simple linear

regression, we calculated a quantity to represent the aver-

age of the squared CV for the observational error variance

in the negative binomial context following methods out-

lined in Irwin et al. (2013).

All parameter estimation was conducted using the

Random Effects module of AD Model Builder (ADMB),

statistical programming software for fitting nonlinear

models (http://admb-project.org; Fournier et al. 2012).

Additional details on the variance-component framework

Table 1 continued

Indicator Calculation of indicator for each plot Years of

data used

Trees

Live tree basal area Sum of live tree basal area within plot 2007–2010

Live tree density (C) Number of live trees in plot converted to per hectare density 2007–2011

Snag basal area Sum of standing dead tree basal area within plot 2007–2010

Snag density (C) Number of standing dead trees in plot converted to per hectare density 2007–2011

a Data were used only from plots that contained jack-in-the-pulpit in the 1-m2 quadrats
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and these estimation procedures can be found in Wagner

et al. (2007) and Irwin et al. (2013).

Preliminary models estimating components of variance

(described above) used data from eight ERMN parks and

indicated that spatial variability was the largest source of

variance. For subsequent simulation analyses (described

below), we used data only from Delaware Water Gap NRA

for estimating variance components, because, (a) a main

goal of ERMN monitoring is to provide park-specific

information, (b) using data from one park reduced the

spatial variability, and (c) Delaware Water Gap NRA was

the only single park that contained revisited plots from the

common panel as well as within-year quality control

revisits necessary to calculate all of the components of

variance. However, one set of simulations (i.e., coarse

woody debris volume from xeric forests) used data from all

xeric plots in New River Gorge NR, Gauley River NRA,

and Bluestone NSR instead of Delaware Water Gap NRA

data (see effect of post-stratification into vegetation

Domains below).

Next, we used a simulation approach to examine the

statistical power to detect temporal trends in 30 forest

indicators. Simulations followed the approach outlined in

Wagner et al. (2007) and Wagner et al. (2009). Briefly, 250

simulations were performed for each indicator and sam-

pling scenario. During each simulation, a 30-year-time

series of a vegetation indicator was simulated for 500 plots

(the number of potential plots available to be sampled in

Delaware Water Gap NRA under the current ERMN

sampling plan) using the estimated spatial and temporal

components of variation. A population-average temporal

trend (k) was then specified (e.g., an increase of 1 % of the

forest indicator�year-1); however, each individual plot

could deviate from this population-average trend, with the

deviation dependent on the magnitude of the trend variance

component (ti). Linear trends were investigated and

appropriate, because we wanted to link the overall man-

agement question (i.e., detecting the presence of a mono-

tonic change) to the monitoring objective (Wagner et al.

2013). Each year, the simulated vegetation data were

sampled from the population of plots using one of the

available panel designs. The number of sampled plots

ranged from 3 to 25. Plots were sampled either with a

simple 4-year panel design in which a specified number of

plots were sampled in each panel, or with a connected

4-year panel design in which one-fifth of the plots were

sampled every year in the common panel (see Fig. 2 in

Urquhart et al. 1998 for a schematic illustrating sampling

designs). During each simulation, every 3 years of the

sampling process, models outlined in Eqs. 1 or 2 were used

to test the null hypothesis that k̂ ¼ 0, and the test statistic

was calculated and compared to a critical value (with

a = 0.05). Because the data generated depict a situation in

which we know the null hypothesis is false (i.e., a trend of

pre-specified magnitude was incorporated into the data),

power was estimated as the percentage of trials (i.e., of 250

simulations) that rejected the null hypothesis.

Results

Partitioning of Variance Using Mixed Models

We attempted to fit mixed models and estimate variance

components for all 30 forest indicators. For the non-count

data, all models ran to convergence. The fixed slope, total

variance, and percent of total variance in different variance

components are shown in Table 2. The fixed slope provides

an estimate of the yearly change occurring for each indi-

cator over the 4–5-year sampling period. For most indi-

cators, the vast majority of the total variance was spatial.

Total variance for total cover of rhizomatous ferns, average

cover of invasive exotic species, and total cover of invasive

exotic species was notably higher than for the other

indicators.

For the count data, the estimation procedure ran to

completion for all of the indicators except for total number

of Canada mayflower individuals. However, convergence

warnings were produced for the majority of the indicators

(Table 2), suggesting that the model was not generating

reliable estimates for all parameters. Inspection of the

resulting parameter estimates suggested that the model was

likely having trouble estimating several of the temporal

variance parameters (Table 2), likely due to the relatively

short (4 or 5 years) nature of the time series and because

incorporating spatial effects into the model appeared to

allow for close approximation of the observed data. The

high percent of the total variance contained in derived

residual variance term in these cases does not necessarily

refer to observer error while collecting field measurement.

It refers to all of the remaining unexplained variation,

which includes some temporal variation that could not be

estimated separately by the model. As such, power simu-

lations were run only for the four count indicators which

did not produce convergence warnings during model esti-

mation (Table 2).

Power to Detect Trends in Forest Health Indicators

Overall, the simulations indicate that the current sampling

design for the ERMN Forest and Soil Monitoring Program

(Perles et al. 2014) will likely yield greater than 80 %

power to detect a 1 % trend�year-1 in most forest health

indicators within two to three sampling cycles
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(10–15 years, Table 3) at the two largest ERMN parks.

Power curves for these simulations are shown in the Sup-

plementary Material (Supplementary Material 1; note that

any irregularities in the power curves, as opposed to

smooth lines, are a result of variability among simulation

runs). For some indicators, such as average coarse woody

debris volume, average stocking index, total shrub cover,

total cover of invasive exotic species, and average cover of

invasive species, the sampling design never attains 80 %

power to detect a 1 % trend�year-1 even after 30 years.

The total variance for these indicators was larger ([ 1) than

for the other non-count indicators. For average height on

the tallest jack-in-the-pulpit and total cover of rhizomatous

ferns, power to detect a 1 % trend�year-1 exceeded 80 %

only after 15–20 years. Power curves for the count indi-

cators indicate that the sampling design will likely yield

greater than 80 % power to detect a 5 % trend�year-1

within one to two sampling cycles (5–10 years) but will not

yield greater than 80 % power to detect a 1 % trend�year-1

until after three sampling cycles ([15 years) for three of

the four indicators (Supplementary Material 1, Table 3).

The sampling design is likely overly intensive for detecting

a 5 % trend�year-1 in the two largest parks for nearly all of

the key indicators, since the simulations showed nearly

100 % power for all indicators after 12 years (Table 3). In

general, indicators that measure the proportion of the total

species richness or total cover (e.g., average proportion of

total quadrat plant cover in non-native species) yielded

much higher power than indicators that measure absolute

total cover or average cover. We propose that this is

explained by the fact that using proportions reduces the

variability in cover measurements caused by yearly

weather patterns (e.g., temperature and precipitation) and

different observers.

Effect of Sampling Design and Trend Magnitude

The simple panel and connected panel designs had similar

power estimates for detecting temporal trends (Fig. 2).

Within the first 5 years, the connected panel design ini-

tially exhibited slightly higher power than the simple panel

design, but this advantage was not retained in subsequent

years. This pattern was similar regardless of the magnitude

of trend (1–10 %�year-1) that was being imposed. As

expected, the power curves in Fig. 2 illustrate that trends of

higher magnitude can be detected with higher statistical

power. Given these results, the added cost of implementing

the connected panel is not justified, especially considering

the potential for annual sampling to impact the vegetation

(e.g., trampling). In addition, for some key field measure-

ments such as tree diameter-at-breast-height (DBH), the

average annual change (0.38 cm for DBH) is nearly

equivalent to the average error in field measurementT
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(0.27 cm for DBH). For measurements such as DBH,

yearly sampling would likely add unnecessary ‘‘noise’’ to

the data since observer error is nearly equal to the average

annual change.

Effect of Sample Size

The sampling effort varies among ERMN parks in relation

to park size, ranging approximately from 3–25

plots�park-1�year-1. Using variance components estimated

from Delaware Water Gap NRA data only, simulations

were performed with sample sizes similar to those in four

parks (i.e., Delaware Water Gap NRA with 25

plots�year-1, Bluestone NSR with 10 plots�year-1, Fort

Necessity NB with 5 plots�year-1, and Johnstown Flood

NMem with 3 plots�year-1). Simulations indicate that,

even for the smallest parks, the current sampling design is

adequate to detect a 5 % trend�year-1 in average coarse

woody debris volume (Fig. 3) and 1 % trend�year-1 in live

tree basal area (Fig. 4) within three sampling cycles. Power

curves in Figs. 3 and 4 indicate that the sample size could

be reduced by more than half and retain a similar level of

power. These results could be interpreted to indicate that

the sampling design is overly intense, and that a smaller

number of plots could detect trends at an acceptable level

for less time and cost investment. However, the larger

parks contain diverse vegetation which could be analyzed

separately, since different trends may be occurring in dif-

ferent vegetation types (see Effect of Post-Stratification

into Vegetation Domains below).

Effect of Post-stratification into Vegetation Domains

In the larger ERMN parks (Delaware Water Gap NRA,

New River Gorge NR, Gauley River NRA, and Bluestone

NSR), the forests found on the upper slopes and ridgetops

are very different than the forests growing on the lower

slopes and valley bottoms. Xeric forests on higher

Table 3 Power of ERMN Vegetation Monitoring Program to detect trends in key forest health indicators after 6 and 12 years

Non-count indicators Power to detect

1 %�year-1 trend

after 6 years (%)

Power to detect

1 %�year-1 trend after

12 years (%)

Power to detect

5 %�year-1 trend

after 6 years (%)

Power to detect

5 %�year-1 trend after

12 years (%)

Average coarse woody debris volume 46.4 57.6 88.7 100.0

Total cover of invasive exotic species 47.9 60.5 71.5 95.5

Total cover of rhizomatous ferns 52.3 63.4 75.2 99.2

Total shrub cover 53.5 67.7 88.7 100.0

Average cover of invasive exotic species 47.6 69.3 84.7 100.0

Average stocking index 57.8 71.8 90.4 100.0

Average height of tallest jack-in-the-

pulpit

62.4 73.7 98.6 100.0

Snag basal area 65.2 85.5 100.0 100.0

Average proportion of total species

richness in native species

81.2 87.4 100.0 100.0

Average proportion of total cover in non-

native species

94.4 100.0 100.0 100.0

Average proportion of total cover in

native species

98.1 100.0 100.0 100.0

Floristic quality index 93.5 100.0 100.0 100.0

Total sapling basal area 100.0 100.0 100.0 100.0

Average proportion of total species

richness in non-native species

98.4 100.0 100.0 100.0

Average proportion of total cover in

invasive exotic species

99.4 100.0 100.0 100.0

Average proportion of total species

richness in invasive exotic species

100.0 100.0 100.0 100.0

Live tree basal area 100.0 100.0 100.0 100.0

Count indicators

Walk around species richness 18.4 53.5 92.2 100.0

Live tree density 22.4 56.1 84.1 100.0

Total seedling density 26.5 54.6 74.1 95.3

Total number of shrub stems 50.3 65.5 53.1 80.3

Environmental Management

123



topographic positions are dominated by oaks (Quercus spp.)

and hickories (Carya spp.), often with ericaceous shrubs (e.g.,

blueberries, mountain laurel) in the understory. In the West

Virginia parks, forests in lower topographic positions are often

lush mixed mesophytic vegetation dominated by sugar maple,

yellow buckeye (Aesculus flava), and American basswood

(Tilia americana), with a wide diversity of herbaceous and

graminoid plants in the understory. In Delaware Water Gap

NRA, mesic forests are highly variable, due to the varied land-

use history in the river valley. It is possible that different trends

in the key indicators are occurring in the different forest types.

Plots were classified as either mesic or xeric based on the

plots’ location on park-specific vegetation maps (Perles et al.

2006a, Perles et al. 2006b, Perles et al. 2006c; Perles et al.

2007a, Perles et al. 2007b; Vanderhorst et al. 2007, 2008,

2010) and the species observed in the monitoring plots.

Simulations using data from all four large parks indicate

that power remains similar when plots are post-stratified by

vegetation type, despite the corresponding reduction in

sample size by half. For these simulations, the full sample

(25 plots�year-1) used the variance components estimated

from all Delaware Water Gap NRA plots, the mesic sim-

ulations used variance components from only mesic Del-

aware Water Gap NRA plots and simulated half the sample

(13 plots�year-1), and the xeric simulation used variance

components from only xeric plots in New River Gorge NR,

Gauley River NRA, and Bluestone NSR and simulated half

the sample (13 plots�year-1).

Effect of Coherent Temporal Variation

For many of the key indicators, the coherent temporal

variation was estimated to be zero or very small (Table 2).

The true value is likely greater than zero; however, we

were unable to find any published values for coherent

temporal variation in forest monitoring data. Therefore, we

ran several simulations increasing (1–10 %) the proportion

of the total variance allocated to coherent temporal varia-

tion (Fig. 5). The power to detect a 1 % trend�year-1 was

unaffected by the amount of coherent temporal variation

we evaluated. We suspect that increasing the coherent

temporal variance had little effect on power, because a very

large proportion of the total variance is spatial, which we

can reduce the influence of by simply sampling more plots.

However, the power to detect a 5 % trend�year-1 decreases

with the increasing coherent temporal variation. If the true

value of coherent temporal variation was larger than the

small values used in the simulations for many of the key

indicators, then actual power will be lower than reported in

Table 3 and Supplementary Material 1.

Discussion

The simulations described herein provide an evaluation of

a regional forest monitoring program’s statistical power to

detect temporal trends, as applied in the Delaware Water

Gap NRA, in 21 key forest health indicators. Compared to

monitoring programs focused on other taxa, such as insects

or amphibians, monitoring programs focused on terrestrial

plants generate data with lower variability and higher

power to detect temporal trends (Gibbs et al. 1998).

Given the ERMN’s Vegetation and Soil Monitoring

Program’s primary objective, the sampling design is likely

overly intensive for detecting a 5 % trend per year for all of

the indicators, is appropriate for detecting a 1 % trend per

year in most indicators, and is insufficient for detecting a

1 % trend per year for a few indicators. For this particular

Fig. 2 Power to detect trends in

coarse woody debris volume

using two sampling designs
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monitoring program, it was decided a priori that the ability

to detect a linear trend when it was, in fact, present with a

high level of confidence was important in order to identify

changes in forest structure relatively early on in the pro-

gression of change. Our analysis suggests that this is pos-

sible for many indicators given the present sample size,

type-I error rate, the underlying variance structure, and the

statistical models use to assess trends. For those indicators

with what we define as low power (\0.80), they can be re-

evaluated in terms of their importance to retain within the

monitoring program, or the type-I error rate could be

increased if managers decide that failing to detect a real

trend is deemed more important than detecting a false

trend. In addition, although more difficult logistically to

implement, we could use what we have learned about how

total variance is partitioned for these ‘‘low power’’ indi-

cators and modify the sampling design in such a way to

reduce certain sources of variation. In our case, the primary

source of variation for ‘‘low power’’ indicators was spatial

variability. Therefore, additional sites could be added or a

spatial stratification scheme could be implemented (e.g.,

develop a landscape-based classification scheme that

groups similar plots and then look for trend within those

vegetation classes).

These power estimates were ‘‘best case scenarios,’’ since

the estimates of coherent temporal variation and estimates

of trend variation were likely underestimated based on only

4–5 years of data. If the true value of coherent temporal

variation is much larger than the values used in the simu-

lations (resulting in a lower proportion of the total variation

Fig. 3 Power to detect a 5 %

trend per year in average coarse

woody debris volume as

simulated using different

sample sizes for different parks

Fig. 4 Power to detect 1 %

trend per year in live tree basal

area as simulated using different

sample sizes for different parks
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being spatial), then actual power would be expected to be

lower than reported here. A larger dataset spanning more

years (e.g., in 2016 after all plots have been sampled twice)

would improve estimability of components of variance and

thus power estimates. Although the power curves reported

here are potentially overly optimistic, they suggest that the

current sampling design is meeting the program’s objec-

tives of detecting a 20 % change in key parameters over

five or ten years (Perles et al. 2014).

An important caveat is that most power simulations

presented here are based on variance components calcu-

lated from data collected only in one park (Delaware Water

Gap NRA), primarily because the sampling design

employed in that park provided the kinds of data necessary

to calculate all of the components of variance. From a

broad perspective (i.e., comparing ERMN forests to forests

nationwide), Delaware Water Gap NRA forests are rela-

tively similar to forests in the other ERMN parks. How-

ever, there are important differences among park forests

that are influenced by geology, topography, land-use his-

tory, distribution of forest pests, etc. These park-specific

differences may influence the power of the sampling design

in ways not captured by this analysis.

In addition, it is important to view the results of the

power analyses within the context of the management

objective, which was to detect linear (monotonic) change

in forest indicators over time. Although it was appropriate

in this case to evaluate the power to detect linear trends,

because it linked the value-based management objective to

the statistically based monitoring objective (Wagner et al.

2013), it may not adequately represent the ability to detect

nonlinear changes, such as abrupt shifts in forest condi-

tions. In fact, it has been proposed that rapid changes in

system state, including forest ecosystems, may occur if

thresholds are exceeded (Peters et al. 2004). This is of

particular concern in the face of a changing climate where

temperature or moisture thresholds may be exceeded for

forest ecosystems (Burkett et al. 2005). As such, if the

objective of a forest monitoring program is to detect non-

linear changes or abrupt shifts in system state over time,

the results of this power analysis may not be particularly

relevant, and new analyses should be performed based on

specific monitoring objectives. Even so, partitioning vari-

ance into its component sources, as was done here, may be

a useful tool to consider when attempting to quantify sys-

tem responses to large perturbation, even if management

objectives are not focused on linear trend detection.

For the metrics examined here, total variance appeared

more influential in determining power than the structure of

the variance components. Similarly, Stow et al. (1998)

found total variance to be one of the primary factors

affecting the ability to detect trends. Indicators that mea-

sure the proportion of a total (i.e., species richness or

percent cover) yielded much higher power than indicators

that measure absolute or average values, since using the

proportion reduces the variability in cover measurements

caused by yearly weather patterns and different observers.

The analyses also indicated that the connected panel

design does not provide substantial additional power over

the simple panel design but would likely incur additional

sampling cost. Similarly, Urquhart et al. (1993) found that

a connected panel design had the greatest benefit to trend

detection within the first four years of sampling with

negligible benefit after eight years.

These results provided crucial guidance for the ERMN

and other regional forest monitoring programs by identi-

fying the sensitivity of key forest indicators to temporal

trend detection. These analyses also offered essential

Fig. 5 Power to detect 1 and

5 % trend per year in coarse

woody debris volume with

coherent temporal variance set

at 1, 5, and 10 % of the total

variance
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information on the time required to detect temporal trends

in important forest indicators. Both sets of information are

critical to the development and successful implementation

of long-term regional monitoring programs.
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